Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Main subject
Language
Document Type
Year range
1.
Front Pharmacol ; 14: 1188086, 2023.
Article in English | MEDLINE | ID: covidwho-20245005

ABSTRACT

COVID-19-associated acute kidney injury (COVID-19 AKI) is an independent risk factor for in-hospital mortality and has the potential to progress to chronic kidney disease. Prunella vulgaris L., a traditional Chinese herb that has been used for the treatment of a variety of kidney diseases for centuries, could have the potential to treat this complication. In this study, we studied the potential protective role of Prunella vulgaris in COVID-19 AKI and explored its specific mechanisms applied by network pharmacology and bioinformatics methods. The combination of the protein-protein interaction network and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment -target gene network revealed eight key target genes (VEGFA, ICAM1, IL6, CXCL8, IL1B, CCL2, IL10 and RELA). Molecular docking showed that all these eight gene-encoded proteins could be effectively bound to three major active compounds (quercetin, luteolin and kaempferol), thus becoming potential therapeutic targets. Molecular dynamics simulation also supports the binding stability of RELA-encoded protein with quercetin and luteolin. Together, our data suggest that IL6, VEGFA, and RELA could be the potential drug targets by inhibiting the NF-κB signaling pathway. Our in silico studies shed new insights into P. vulgaris and its ingredients, e.g., quercetin, as potential botanical drugs against COVID-19 AKI, and warrant further studies on efficacy and mechanisms.

2.
J Mol Med (Berl) ; 101(4): 449-460, 2023 04.
Article in English | MEDLINE | ID: covidwho-2287607

ABSTRACT

Studies showed that SARS-CoV-2 can directly target the kidney and induce renal damage. As the cell surface receptor for SARS-CoV-2 infection, the angiotensin-converting enzyme 2 (ACE2) plays a pivotal role for renal physiology and function. Thus, it is important to understand ACE2 through which pathway influences the pathogenesis of renal damage induced by COVID-19. In this study, we first performed an eQTL mapping for Ace2 in kidney tissues in 53 BXD mice strains. Results demonstrated that Ace2 is highly expressed and strongly controlled by a genetic locus on chromosome 16 in the kidney, with six genes (Dnase1, Vasn, Usp7, Abat, Mgrn1, and Rbfox1) dominated as the upstream modulator, as they are highly correlated with Ace2 expression. Gene co-expression analysis showed that Ace2 co-variates are significantly involved in the renin-angiotensin system (RAS) pathway which acts as a reno-protector. Importantly, we also found that Ace2 is positively correlated with Pdgf family members, particularly Pdgfc, which showed the most association among the 76 investigated growth factors. Mammalian Phenotype Ontology enrichment indicated that the cognate transcripts for both Ace2 and Pdgfc were mainly involved in regulating renal physiology and morphology. Among which, Cd44, Egfr, Met, Smad3, and Stat3 were identified as hub genes through protein-protein interaction analysis. Finally, in aligning with our systems genetics findings, we found ACE2, pdgf family members, and RAS genes decreased significantly in the CAKI-1 kidney cancer cells treated with S protein and receptor binding domain structural protein. Collectively, our data suggested that ACE2 work with RAS, PDGFC, as well as their cognate hub genes to regulate renal function, which could guide for future clinical prevention and targeted treatment for COVID-19-induced renal damage outcomes. KEY MESSAGES: • Ace2 is highly expressed and strongly controlled by a genetic locus on chromosome 16 in the kidney. • Ace2 co-variates are enriched in the RAS pathway. • Ace2 is strongly correlated with the growth factor Pdgfc. • Ace2 and Pdgfc co-expressed genes involved in the regulation of renal physiology and morphology. • SARS-CoV-2 spike glycoprotein induces down-regulation of Ace2, RAS, and Pdgfc.


Subject(s)
COVID-19 , Animals , Mice , COVID-19/metabolism , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Peptidyl-Dipeptidase A/genetics , Kidney/metabolism , Mammals/metabolism , Ubiquitin-Protein Ligases , Membrane Proteins/metabolism , Apoptosis Regulatory Proteins/metabolism
3.
Int J Intercult Relat ; 90: 1-10, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1926533

ABSTRACT

With economic globalization, there has been a rapid increase in the number of sojourners in the workforce and in international education. However, little is known about the impact of career adaptability (a key psychosocial resource for managing career transitions) on international students' adaptation in cross-cultural contexts, particularly their quality of life during the COVID-19 pandemic. Based on career construct theory, this study examined how career adaptability directly and indirectly enhances international students' quality of life through perceived online and offline social support, and how the COVID-19 pandemic affected their adaptation in cross-cultural context. With a sample of 328 African international students in China, we found that career adaptability and perceived online/ offline social support were positively related to the quality of life during the COVID-19 pandemic. Furthermore, perceived offline social support, but not perceived online social support, was an adapting response through which career adaptability enhances international students' quality of life in cross-cultural context. The mediating effect of perceived offline social support diminished when the self-rated COVID-19 impact on international students was severe. These findings provide a basis for future psychosocial interventions to enhance international students' adaptation to cross-cultural contexts during and after the COVID-19 pandemic.

SELECTION OF CITATIONS
SEARCH DETAIL